Quick Contact

    Python Tutorial
    Python Panda Tutorial
    Python Selenium
    Python Flask Tutorial
    Python Django
    Numpy
    Tensorflow
    Interview Questions & Answers

    numpy.unique()

    Numpyunique() gets utilized in order to identify the exclusive elements present in an array. The function returns the exclusive elements in a sorted manner for the given array. Additionally, three outputs can be derived when running the numpy.unique() which can return the following:

    • The function can return the absolute times the unique elements contained in an array which has been input by the user.
    • The function can return the respective indices representative of the unique values contained in the array which has been input by the user.
    • The function can return the respective indices of the unique elements for the array which will help in the reconstruction of the array originally entered by the user.

    Syntax and Parameters

    Syntax and Parameters of numpy.unique( ) are given below:

    Syntax

    numpy.unique(ar, return_index = False ,return _ inverse = False, return_counts = False, axis = None)

    Parameters

    • ar: array_like

      The input array entered – It will be flattened in the case it is not one dimensional.

    • return_index: bool,(optional)

      If the parameter is true the indices of the input array ar would be returned which results to form a unique array with no repetitive elements.

    • return_ inverse: bool, (optional)

      If the parameter entered is true, the indices of the input array ar would be returned which results to form a unique array used for reconstructing the array ar.

    • return_ counts: bool, (optional) – found in version 1.9.0

      New in version 1.9.0. If the parameter entered is true, the number of instances when the unique elements have been repeated in the input array ar is returned.

    Return
    • unique: ndarray

      The sorted unique elements of the input array ar.

    • unique_indices: ndarray, (optional)

      When the return_index is validated as true the returned value contains the indices of primary occurrence of the distinct values which were present in the input array (which has to be flattened)

    • unique a _ ainversea: a ndarray, (optional)

      The indices are retuened which can be used for reconstruction of the originally input array which can be constructed using the distinct values.

    • unique a _ acountsa: a ndarray, a (optional) present in the newer version 1.9.0

      The number of times each of the unique values comes up in the original array. Only provided if return_counts is True.

    Example of numpy.unique()

    Example of using numpy.unique() function are:

    Code:

    import numpy as np
    a1= np.array([5, 2, 6, 2, 7, 5, 6, 8, 2, 9])
    print '1st a array to be entered:'
    print a1
    print 'The unique values of the 1st Array:'
    u1 = np.unique (a1)
    print u1
    print 'Displaying the Unique array & Indices array:'
    i1 = np.unique(a1, return_index= True)
    print i1
    print 'Number corresponding to the index:'
    print a1
    print 'Indices of unique array:'
    u1,indices = np.unique(1, return_inverse=True)
    print u1
    print 'The indices for the given array are:'
    print indices
    print 'Reconstruction of the original array with the use of indices:'
    print u1[indices] print 'Return the count of repetitions of unique elements:'
    u1,indices = np.unique(a1, return_counts = True)
    print u1
    print indices
    


     

    Apply now for Advanced Python Training Course

    Copyright 1999- Ducat Creative, All rights reserved.

    Anda bisa mendapatkan server slot online resmi dan terpercaya tentu saja di sini. Sebagai salah satu provider yang menyediakan banyak pilihan permainan.