Quick Contact

    Python Tutorial
    Python Panda Tutorial
    Python Selenium
    Python Flask Tutorial
    Python Django
    Numpy
    Tensorflow
    Interview Questions & Answers

    NumPy Array Append

    NumPy append is a function which is primarily used to add or attach an array of values to the end of the given array and usually, it is attached by mentioning the axis in which we wanted to attach the new set of values axis=0 denotes row-wise appending and axis=1 denotes the column-wise appending and any number of a sequence or array can be appended to the given array using the append function in numpy.

    Syntax:

    The basic syntax of the Numpy array append function is:

    numpy.append(ar, values, axis=None)

    • numpy denotes the numerical python package.
    • append is the keyword which denoted the append function.
    • ar denotes the existing array which we wanted to append values to it.
    • values are the array that we wanted to add/attach to the given array.
    • axis denotes the position in which we wanted the new set of values to be appended.
    • axis=0 represents the row-wise appending and axis=1 represents the column-wise appending.

    Examples of NumPy Array Append

    Following are the examples as given below:

    Example #1

    Let us look at a simple example to use the append function to create an array.

    importnumpy as np

    arr1=np.append ([12, 41, 20], [[1, 8, 5], [30, 17, 18]])

    arr1

    Example #2

    importnumpy as np

    arr1=np.append ([[12, 41, 20], [1, 8, 5]], [[30, 17, 18]],axis=0)

    arr1

    Example #3

    In this example, let’s create an array and append the array using both the axis with the same similar dimensions.

    import numpy as np
    arr1=np.array([[12, 41, 20], [1, 8, 5]])
    print(arr1)
    #### Appending Row-wise
    print(np.append(arr1,[[41,80,14]],axis=0))
    print('\n')
    #### Appending column-wise
    print(np.append(arr1,[[41,80,14],[71,15,60]],axis=1))
    print('\n')
    

    Example #4

    import numpy as np
    arr1 = np.arange(10)
    print("one dimensional arr1 : ", arr1)
    print("Shape of the array : ", arr1.shape)
    arr2 = np.arange(5, 15)
    print("one dimensional arr2 : ", arr2)
    print("Shape of the array : ", arr2.shape)
    # Array appending
    arr3 = np.append(arr1, arr2)
    print("Appended arr3 : ", arr3)
    

    Example #5

    import numpy as np
    arr1 = np.arange(10).reshape(2, 5)
    print("one dimensional arr1 : ", arr1)
    print("Shape of the array : ", arr1.shape)
    arr2 = np.arange(5, 15).reshape(2, 5)
    print("one dimensional arr2 : ", arr2)
    print("Shape of the array : ", arr2.shape)
    # Array appending
    arr3 = np.append(arr1, arr2)
    print("Appended arr3 : ", arr3)
    


     

    Apply now for Advanced Python Training Course

    Copyright 1999- Ducat Creative, All rights reserved.

    Anda bisa mendapatkan server slot online resmi dan terpercaya tentu saja di sini. Sebagai salah satu provider yang menyediakan banyak pilihan permainan.